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This is supplementary material to the paper “A Scalable Empirical Bayes Approach to Variable Selection in
Generalized Linear Models” (Bar, Booth & Wells, 2019). This vignette provides code and sample output for
some simulated data and case studies.

Set-Up

SEMMS is implemented in R and is available as a package from github, https://github.com/haimbar
/SEMMS

SEMMS requires R version 3.6.0 and up. It requires five packages to be pre-installed: Rcpp,
RcppArmadillo, MASS, car, and, as of version 0.2.0 it requires the edgefinder package, available from
https://github.com/haimbar/edgefinder . It can be installed by using

devtools::install_github("haimbar/edgefinder")

To install SEMMS,

devtools::install_github("haimbar/SEMMS")

To create files which SEMMS can use, please read the documentation of the function readInputFile.

Updates

Version 0.2.0 uses the edgefinder function in order to find highly correlated pairs of predictors.
Then, it forms clusters of predictors and picks the central variable from each cluster to be included
in the fitting process. Any variable not assigned to a cluster is also included in the model fitting. The
excluded variables are shown by the plotMDS function, if they end up begin highly correlated with a
significant predictor. By default, initWithEdgeFinder is set to TRUE. To pick the initial set of
predictors manually, set this argument to FALSE, and use the nnset argument.

The Ozone data

The air-pollution data set analyzed in this case study was first introduced in (Breiman, L, and J Friedman,
1985), who illustrated the ACE procedure. It consists of daily measurements of ozone concentration levels
in the Los Angeles basin, collected over 330 days in 1976. There are eight meteorological explanatory
variables, labeled x1,…,x8:

x1: (vh) Vandenburg height, % - the altitude at which the pressure is 500 millibars,
x2: (wind) the wind speed (mph),
x3: (hum) the humidity (%),
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x4: (temp) the temperature (Fahrenheit),
x5: (ibh) the temperature inversion base height (feet),
x6: (dpg) the pressure gradient (mm Hg),
x7: (ibt) the inversion base temperature (Fahrenheit),
x8: (vis) the visibility (miles).

We refer to a more recent analysis in (Lee, Nelder, and Pawitan, 2006, subsection 2.4.4), which also uses
x9, the day of the year (doy). Selecting a first-order linear regression model can be done easily by
checking all 29=512 possible models, but this strategy is not feasible when we wish to include second, or
third order terms (with 254 and 2219 possible models, respectively.) We consider models with first and
second order terms, with a total of 54 putative predictors. We standardize these predictors using the scale
function in R. We use SEMMS to fit a log-linear model in which it is assumed that log(Y) is normally
distributed. The following code shows how to run the “greedy” version of SEMMS (rnd=F in the code
below), and produce some plots (see Figure 1 and Figure 2 below).

library(SEMMS)
# The ozone data, adding second order terms
fn <- system.file("extdata", "ozone.txt", package = "SEMMS", mustWork = TRUE)
dataYXZ <- readInputFile(fn, ycol=2, skip=19, Zcols=3:11,
   addIntercept = TRUE, logTransform = 2, twoWay = TRUE)
nn <- 20    # initial guess for the number of non-nulls
distribution <- "gaussian"
rnd <- F
fittedSEMMS <- fitSEMMS(dataYXZ, mincor=0.75, nn=nn, minchange=1, initWithEdgeFinder=F,
                        distribution="N",verbose=T,rnd=rnd)
foundSEMMS <- sort(union(which(fittedSEMMS$gam.out$lockedOut != 0),
                         fittedSEMMS$gam.out$nn))
fittedGLM <- runLinearModel(dataYXZ,fittedSEMMS$gam.out$nn, "N")
print(summary(fittedGLM$mod))
plotMDS(dataYXZ, fittedSEMMS, fittedGLM, ttl="Ozone Data")
plotFit(fittedGLM)

Figure 1: A network representation of the selected model for the ozone data
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Figure 2: Goodness of fit plots for the fitted model, ozone data

The model with the variables depicted in Figure 1 fits well, as can be seen in Figure 2, and it explains
83.3% of the variability in the data. The adjusted R2 is 82.5, and the AIC is 187 (Aikake, 1974), compared
with 75% and 303, respectively, in (Lee et al., 2006)

Notes about the code:

1. In the readInputFile we used the option twoWay=TRUE to add all the second order terms.
2. foundSEMMS is a vector which contains all the selected variables and ones which are highly

correlated with them (|r|>0.75 in this example.)
3. plotMDS was used to generate a graphical representation of the selected variables and the

response as a network in Figure 1, and plotFit was used to generate the diagnostics plots in Figure
2.

4. We get similar results if we do not log-transform the response, and use P (Poisson) instead of N
(normal) in the distribution argument of fitSEMMS.

5. Note that addIntercept = TRUE means that the original data does not contain an intercept, so
SEMMS should add it before running the algorithm. FALSE means that the data already contains an
intercept, and there is no need to add it.

6. We used the option initWithEdgeFinder=F, which means that the algorithm did not use edgefinder
to find highly correlated predictors. It used a simple threshold method. In general, setting
initWithEdgeFinder=T is preferred, since it uses a method which allows to control the error rate
when deciding which edges should be in the graph. When this argument is set to TRUE, the mincor
argument is ignored.

7. We used the option nn=20 to start the algorithm with 20 putative predictors. SEMMS uses a simple
criterion based on one predictor at a time analysis but, the user may provide a specific set of
predictors for the initial iteration. For example, to use variables 9, 45, and 54 we can use the nnset
parameter, as follows:

fittedSEMMS <- fitSEMMS(dataYXZ, mincor=0.75, nnset=c(9,45,54), minchange=1,
                        distribution="N",verbose=T,rnd=rnd)

One may also choose the initial set of variables using a different method, such as the lasso. The iterative
nature of our Generalized Alternating Minimization (GAM) algorithm, it is guaranteed to do at least as well
as the method used to initialize it because it yields a non-increasing Kullback-Leibler divergence. For
example, using the ncvreg package, with the MCP penalty, we can do:
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cv <- cv.ncvreg(dataYXZ$Z, dataYXZ$Y,family="gaussian", penalty="MCP")
fit <- cv$fit
beta <- fit$beta[,cv$min]
nnset <- which(beta!=0)[-1] - 1
fittedSEMMS <- fitSEMMS(dataYXZ, mincor=0.75, nnset=nnset, minchange=1,
                        distribution="N",verbose=T,rnd=rnd)

This yields 16 variables in the nnset variable.

Finally, we show the results when SEMMS with the edgefinder option set to TRUE:

fittedSEMMS <- fitSEMMS(dataYXZ, mincor=0.8, nn=15, minchange  = 1,
                        distribution="N",verbose=T,rnd=F)
fittedGLM <- runLinearModel(dataYXZ,fittedSEMMS$gam.out$nn, "N")
plotMDS(dataYXZ, fittedSEMMS, fittedGLM, ttl="Ozone data")

Figure 3: A network representation of the selected model for the ozone data, using edgefinder to find
highly correlated predictors.

We can obtain an ANOVA table for the final model, as follows.

regressionTable <- summary(fittedGLM$mod)$coefficients
zvars <- grep("Z\\d{4}",rownames(regressionTable),perl = T)
rownames(regressionTable)[zvars] <- dataYXZ$originalZnames[fittedSEMMS$gam.out$nn]
print(xtable(regressionTable), type="html")

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.21 0.02 114.88 0.00

vh 0.26 0.03 8.84 0.00

ibh -0.22 0.03 -8.25 0.00
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vis -0.09 0.02 -4.09 0.00

doy -0.08 0.02 -3.65 0.00

humid*dpg -0.19 0.02 -7.61 0.00

ibh*dpg -0.16 0.02 -7.18 0.00

doy*doy -0.28 0.02 -12.52 0.00

The log(ozone) levels are a quadratic function of the day of the year. The maximum of this second degree
polynomial with respect to doy corresponds approximately to June 20, very close to the spring solstice.
This captures the seasonal effect, as it is well known that ozone levels are associated with the duration of
daylight.

The NKI70 data

The NKI70 data is available from the “penalized” package in R (Goeman, 2010). In (Bar, Booth, and Wells,
2019) we discuss how we used this data set to analyze which genes are associated with either death or
recurrence of metastasis. Here, we show how to invoke SEMMS to perform the analysis, using the
Poisson response, per (Whitehead, 1980). The selected model is shown graphically in Figure 4.

fn <- system.file("extdata", "NKI70_t1.RData", package = "SEMMS", mustWork = TRUE)
dataYXZ <- readInputFile(file=fn, ycol=1, Zcols=2:73)
fittedSEMMS <- fitSEMMS(dataYXZ, mincor=0.8, nn=6, minchange  = 1,
                        distribution="P", verbose=T, rnd=F)
# Fit the linear model using the selected predictors
fittedGLM <- runLinearModel(dataYXZ,fittedSEMMS$gam.out$nn, "P")
plotMDS(dataYXZ, fittedSEMMS, fittedGLM, ttl="NKI70")

summary(fittedGLM$mod)

Figure 4: A network representation of the selected model for the NKI70 survival data
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The estimated coefficients for the selected model are as follows:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.81 0.40 -7.04 0.00

log.t_i1. -0.37 0.09 -4.17 0.00

SCUBE2 -0.35 0.27 -1.27 0.20

KNTC2 -0.79 0.33 -2.41 0.02

ZNF533 -0.56 0.36 -1.56 0.12

IGFBP5.1 0.36 0.16 2.20 0.03

PRC1 1.09 0.38 2.91 0.00

SEMMS allows the user to ‘lock-in’ variables. That is, to choose which variables must be included in the
model. For example, if we want to include log.t_i1. and Age in the model, we invoke SEMMS by using the
Xcols and Zcols parameters, like this:

dataYXZ <- readInputFile(file=fn, ycol=1, Xcols=2:3, Zcols=4:73)
fittedSEMMS <- fitSEMMS(dataYXZ, mincor=0.8, nn=6, minchange  = 1,
                        distribution="P", verbose=T, rnd=F)
fittedGLM <- runLinearModel(dataYXZ,fittedSEMMS$gam.out$nn, "P")
plotMDS(dataYXZ, fittedSEMMS, fittedGLM, ttl="NKI70")

summary(fittedGLM$mod)

The plotMDS function does not show locked-in predictors, but they are estimated by runLinearModel.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.77 0.40 -7.00 0.00

log.t_i1. -0.38 0.09 -4.28 0.00

Age -0.18 0.19 -0.95 0.34

ZNF533 -0.72 0.39 -1.85 0.06

COL4A2 0.45 0.20 2.29 0.02

IGFBP5.1 0.36 0.17 2.17 0.03

PRC1 0.55 0.28 1.96 0.05

Simulated Data – AR(1)

The following example consists of 1,000 predictors, of which 20 are significant and are highly correlated.
The model was denoted by N5 in (Bar, Booth, and Wells, 2019). where the error terms are i.i.d. from a
standard normal distribution, and Z1,…,Z20 are drawn from a multivariate normal distribution with an
autoregressive (AR1) structure, with . In this simulation, N=100 and in our simulations we show
that the median number of true positives obtained by SEMMS is 20, and the median number of false

ρ = 0.95
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positives is 0. The code for fitting the mixture model to this data via SEMMS is given here. Note that the
input file may be a text file (e.g., comma or tab separated) or it can be an RData file which was created
previously with the readInputFile function.

fn <- system.file("extdata", "AR1SIM.RData", package = "SEMMS", mustWork = TRUE)
dataYXZ <- readInputFile(fn, ycol=1, Zcols=2:1001)
fittedSEMMS <- fitSEMMS(dataYXZ, mincor=0.8, nn=15, minchange  = 1,
                        distribution="N",verbose=T,rnd=F)
# Fit the linear model using the selected predictors
fittedGLM <- runLinearModel(dataYXZ,fittedSEMMS$gam.out$nn, "N")
plotMDS(dataYXZ, fittedSEMMS, fittedGLM, ttl="AR1 simulation")

In this case we used edgefinder to detect highly correlated pairs, and we find all the true predictors, and
no false positives. In this example, if we do not use edgefinder, and rely on the mincor=0.8 seting,
SEMMS finds one false positive (v211) and 20 true positives. Figure 5 shows a graphical representation of
the selected model. The red diamonds represent the variables which were selected by SEMMS, and the
gold circles correspond to variables which are highly correlated with a selected predictor. This diagram,
obtained from the plotMDS function in the SEMMS package clearly shows the AR(1) structure among the
significant predictors.

Figure 5: A network representation of the selected model for the simulated data (N5) where 20 predictors
were drawn from a multivariate normal distribution with an autoregressive structure

Simulated Data – Binary Response AR(1)

The data set SimBin provided with the package contains a simulated dataset according to simulation B2
in (Bar, Booth, and Wells, 2019), with 1000 predictors of which 10 are associated with a binary response.
The true predictors consist of two set of variables (Z1-Z5 and Z101-Z105), each one having an
autoregressive structure, AR(1), with rho=0.95.

fn <- system.file("extdata", "SimBin.RData", package = "SEMMS", mustWork = TRUE)
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dataYXZ <- readInputFile(fn, ycol=1, Zcols=2:1001)
fittedSEMMS <- fitSEMMS(dataYXZ, mincor=0.7, nn=5, minchange  = 1,
    distribution="B", verbose=T, rnd=F)
fittedGLM <- runLinearModel(dataYXZ,fittedSEMMS$gam.out$nn, "B")
plotMDS(dataYXZ, fittedSEMMS, fittedGLM, ttl="Simulated Binomial (AR1)")

Figure 6: A network representation of the selected model for the simulated data (N5) where 20 predictors
were drawn from a multivariate normal distribution with an autoregressive structure
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